Climate Action-Water İn All Aspects

Sustainable Development Goals

How did we start?

We started our The Silent Scream Of Water eTwinning project on 3 October 2020, which started with the participation of 19 teachers and 137 students from 6 different countries.

Project Logo

What is the purpose of our project?

      Approximately 1.3 billion people in the world do not have enough drinking water and 2.3 billion people crave for healthy water. Some estimates suggest that by 2025, over 3 billion people will face water scarcity. The future of water is adversely affected by the increasing population in economic processes, climate change and the rapid increase in consumption. Conscious use of water is only possible by knowing the concepts such as water footprint and water literacy. For this reason, our project was created to raise awareness of secondary school students on conscious water use. In our project, it is aimed to raise individuals who are responsible for the solution of social problems, who can think creatively and analytically, who can produce solutions that differ based on cooperation, and who adopt the principle of lifelong learning with sustainable environmental awareness. absorbed social and technological developments and their relationship with the environment.
Continue reading

UNIMPEDED STEM

STEM and BBC micro:bit coding training was given to the teachers and students of the Gelişim Special Education and Rehabilitation Center in Ankara, Turkey on 17 March – 25 April 2021. It was aimed for teachers to gain knowledge and awareness about STEM and to enable students to experience a more effective learning process with STEM applications. 6 different workshops of 45 minutes each were held. Students with the diagnosis of Specific Learning Disability, Mental Retardation, Hearing Impairment constituted the target group of the study. Female students’ participation was prioritized over male students’ participation. At the end of the event, 25 female students, 15 male students, a total of 40 students and 9 teachers were reached. If they wished to, students and teachers filled in the participation forms before attending the workshops. 6-week workshops were held with children between the ages of 6-14 and their teachers.

We had two goals in UNIMPEDED STEM. First one; It was about giving STEM and Coding training to Special Education and Rehabilitation Center Teachers, and making them aware of them and applying them in their lessons. Our second goal was to create equality of opportunity in education and provide education to disabled individuals with STEM and Coding. We designed an environment where students and teachers can learn while they enjoy themselves and have fun. Days ago, we announced our event on various platforms such as social media and posters. With our activity, children got acquainted with different peer groups. At the end of the activity, the students’ views were received and they stated that they could learn more easily with STEM applications.

Teacher workshops were held with teachers who wanted to participate. Groups were created regardless of age and pre-learning conditions. In this way, it was ensured that the teachers socialized and communicated with their colleagues. Every teacher who participated was asked to do STEM applications in their lessons and they did.

For example, a teacher who was teaching the Letter E, together with the student, first tried to print the letter E with play dough. They made an object that starts with the letter E using Play Dough and made an application that shows the letter E with the BBC micro: bit.

Student workshops, on the other hand, were organized individually or in groups, taking into account their special circumstances. Workshops were planned according to the learning level of each student.

A Coding class was created in the school and computers and micro:bits were placed in this class. It was aimed for each student to learn by doing. BBC micro: bit microcomputer was introduced in the workshops. With the BBC micro: bit, the students’ awareness was raised using applications ranging from fundamental to difficult. LEDs on the BBC micro: bit microcomputer were introduced and exercises such as name printing, letter printing, symbol creation, number recognition, number printing and coding were carried out with LEDs. Exercises that print names, create symbols, and add and subtract when the button is pressed with the buttons were completed. The sensors on the card were shown, accelerometer sensor was introduced and explained along with the exercises that can be applied. The concepts of north, south, east and west were shown with the compass sensor. These practices were adapted to their lessons according to their individual development.

For a student who has difficulty learning the number 2, the number 2 was written on the LEDs with BBC micro: bit, as well as the practice of counting objects and writing the number.

Arrows were drawn using Cartons for students who had difficulty in directions, directions were introduced, and concepts of North, South, East, West were demonstrated with micro: bit.

In our project, we aimed for every child to be able to encounter STEM regardless of their disability. We have observed that with the STEM teaching approach, their learning is easier and permanent. Our students who participated were from different age groups and with different disabilities. Students were very eager to learn, as they could apply the topics they learned in different settings and see the result. At the end of the workshop, the opinions of the students and parents who participated were received. Each participating student and their parents were very happy and stated that they wanted such activities to be carried out continuously and to be widespread.

All the photos belong to the Author – Attribution CC-BY

We don’t Throw, We Transform

Resources are used unconsciously due to industrialization and urbanization. Therefore, domestic waste is increasing. The increasing waste problem affects the individual, family and society negatively.
With the eTwinning projects I carried out at my school, we aimed to raise awareness about making our world more livable by controlling waste. We reused various wastes (glass, plastic, paper, food, etc.) generated in our house. We enabled students to gain awareness of recycling and to transfer this awareness to their environment.

OBJECTIVES

  1. To increase the awareness of students about recycling.
  2. Understanding that not every waste is garbage.
  3. To ensure that they are individuals who love and care about nature.
  4. It enables them to find solutions to the problems they encounter in daily life.
  5. Learns to use available resources without wasting.
  6. Gains environmental awareness at a young age.
Continue reading

Genius Engineers of Nature.

I protect Nature with Stem,

This event is the e-Twinning project named I protect nature with stem established by teachers Saliha Candemir- Turkey, Sonata Jonauskine-Lithuania, Meropi Mastori-Greece ,Demet Türkoğlu-Turkey,Tomutase Conder-Romanya,Gülcan Sarıkaya- Ayşin Kahramantekin-Turkey. We implemented the Stem Discovery Week activities by collecting them under 2 main Headings.

Purpose of the project: Our aim is for children to be able to understand the issue of climate change, which is an important and real problem in daily life, and to develop solution-oriented thinking skills by analytical thinking and research.

Student Age: 5

Duration: 30 + 30 + 30 + 20

Event date: April 22 -28, 2021

Real Life Problem:

 Step: 1 Science Integration: Ask what do air conditioners do for us and our world? What do air conditioners do to our world while cooling us down? After the problem, after saying that greenhouse gases prevent the world from breathing by enveloping the world, the video is watched by clicking the link below.

.





Continue reading

My future sustainable city.

Project idea for sustainable city.

The demographic movement of the population is constantly increasing. That makes that
the concentration of the population in urban areas, to increase the challenges for city planners and designers in managing urban areas for a more sustainable city and a secure future.

.

Technological development is one of the causes affecting human health, the emergence of various diseases that are directly related to the greenhouse factor, the environment. This project is second part of last year SDW activities, about the Sustainable Development Goals and Human life https://stemsdgactivities.wordpress.com/

Subjects:
Geography, Social Studies, Citizenship
Mathematics, Biology, Economy, technology,  ICT

Resources:

Objectives: Students will:

  • develop key competencies related to the importance of the global environmental problem and improve knowledge in their areas.
  • understand how cities should be more sustainable.
  • list the elements that makes an ecological city.
  • how these elements, such as renewable energy, food, affect our health and environment.
  • writing and drawing materials, ecological city plan.
  • present the theoretical information and create an ecological city carpet in a creative way.

Project-based learning: Healthy and sustainable eating requires changing our diet, improving food production and reducing waste. In the end students:

  • develop a research-based learning project.
  • have the opportunity to receive friends from other countries within the eTwinning project.
  • improve their foreign language skills by increasing their creativity, building and inspiring their problem-solving skills in an extremely fun way, career aspirations and gender equality.
  • explore the ecological and green city.

Lifelong learning: The result of learning

  • Understand the global framework of Sustainable Development Goals.
  • Encourage students to consider agriculture, rural industries, and food production worldwide.
  • To consider not only the environmental impacts of those industries but also the social impacts on equality, the economic process and human rights for those working within them.

Learning objectives:

  • Create a more sustainable city for the system, for human health, economy and sustainable world.
  • Intercultural communication.
  • Increase to children’s motivation to learn STEM.
  • Students will experience the application of knowledge on popular products.
  • Improving ITC skills.
  • More mathematical knowledge.
  • Use online applications through demonstration of results.
  • Form a good environment for the study of mathematics within other subjects, careers and professions.

The project is based on:

  • Collaboration with colleagues, teachers, specialists and international partners in the eTwinning project.
  • Increase children’s motivation and interest in the field of STEM through invention.
  • Promotion of teamwork.
  • Cooperation and mutual understanding from other entities and specialists.
  • Students’ curiosity to present their concepts.

21st Century Skills: Students will improve subsequent 21st century skills: Critical thinking, power, collaboration, communication

Literacy skills: Information literacy, media literacy, technological literacy

Life Skills: Initiative, Social Skills, Productivity

Assessment : Hold out presentations within the classroom (self-assessment; peer-assessment; assessment by the teacher).

 Formative evaluation additionally to summative evaluation (assessment by teacher)

Group work (group work skills are a very important a part of the project) Science exhibition/possible experiments/ artefacts from the PBL.

Tools and Resources: Computers, Padlet, PowerPoint, Tricider, Quizzes, MovieMaker, YouTube, Answergarden, Thinglink, Storyjumber.

Learning Space: School classroom, outdoors, online space. Climate and residential. https://live.etwinning.net/projects/project/202941

Activity: This year student will Investigate ,to understand globally how much change is needed to make the city more healthy for humans and sustainable for the planet.
They will create green city, more sustainable CITY FOR BETTER LIFE.
The steps in this project were divided into three phases, including: The main question addressed to the students, the new generation:

  • preparation phase
  • implementation phase
  • the final stage.

Each learning phase based on our project consists of five main sub-phases. These five sub-phases include:

  • organizing students to learn,
  • students’ orientation towards the problem,
  • conducting individual and group investigations,
  • development and presentation of work,
  • analyzing and evaluating the problem-solving process posed through the initial question

First phase: These were the questions that students had to answer during the project. How to help planet earth, our common home?

Second phase: Mother Earth as a result of temperature change, is sick, our life on earth is in danger to humans and other living things. https://youtu.be/ecXwO0TDEm4 . We need to assist her, but HOW? We need to show cities into friendly, green and ecological and need to build cities that are sustainable city. But WHY?

Students answer  this question in kind of brainstorming www.answergarden.com. They look this video https://youtu.be/fsWr0LfM_uQ that is useful to introduce to students that’s time to make the plan and take action. After they look video then I ask: What is a sustainable city?

  • THE CLASS ANSWER THIS QUESTION IN KIND OF BRAINSTORMING HTTP://WWW.ANSWERGARDEN.COM.
  • WHAT IS A FRIENDLY CITY?
  • WHY SHOULD ECOLOGICAL CITIES BE BUILT?
  • HOW DO WE BUILD.

They who have information respond at the class, while others discuss within the online forum at Tricider http://www.tricider.com/brainstorming/2k587sPHYG7. Divide the students into 3 groups and ask them some inquiries to stimulate their curiosity and creativity, identify the matter, research and find the answer.

  • Where should we focus to build an ecological city?
  • Why should we create a green city?
  • What has the ecological city ought to do with our health and covid-19.
  • How are you able to build a sustainable city?
  • What solutions can students provide?

Third phase. Our sustainable city should include plans to generate energy, provide residents with food, treat waste efficiently, transport people, and produce through the city, ensuring that nature is welcomed and supported in our city.

The class complete a puzzle game to create the idea of  ​​an ecological city model. Discuss in the online forum the meaning of biodiversity and sustainable city. http://www.tricider.com/brainstorming/2k587sPHYG7. Students are helped from specialists or teachers of other subjects, such as geography, economics, citizenship, biology to come to the aid of knowledge for some information, for this we created the Zoom Meeting with Stem teachers. After our students complete the Padlet regarding the work done.
ZOOM MEETING
https://padlet.com/erikonomi180/pjpvlpr9vae1ggqt, they express their arguments, their analyzes and conclusions. In this way digital competencies will be developed to students and given to them the opportunity to use computers, to process and present their findings.

The group 1, present their findings in PowerPoint to all other students in the class.

Presentation front the classroom about what it is a sustainable city and how it is related with our health.

Using Canva tool to create posters, leaflets to make handmade posters.

After group 1 finish prezanton, students play the games at: https://www.think-nature.eu/highlights/thinknature-presents-nbs-game/.

Fouth phase. City charter. Students that will build the city taking into account environmental factors, geographical location, spatial features and building physics. (The city of Patos, the area where the students live is an oil-bearing area).

The choice of building materials from biodegradable, natural or recyclable materials will be ensured. This will insulate and heat loss will be minimized, for example, wood materials.

Rooftop gardens is a functional and environmentally friendly garden which create new spaces for growing plants and food.

Thus from photosynthesis, the gardens remove the greenhouse gas from the air and release fresh oxygen…


Energy.
People want higher living standards and the latest appliances require energy consumption. We still use a lot of fossil fuels, like coal and gas but because natural resources will be able to meet the demands and desires of the population in the future, we need to use more renewable energy. Research will ensure energy efficiency and take satisfaction from energy sources.


These systems will be solved with heat recovery, such as wind turbines, solar collectors and passive air methods. Students doing the quiz about energy:

Sixth phase: Experiment: Many cities are harnessing alternative energy which could be a low costs technology. For that students will experiment by becoming creative and inventive by creating a solar oven.

In order to use as many devices that use solar energy, such as light and heat emitted by the sun, solar panels or artificial photosynthesis and solar ovens which students will include in ecological cities. Our students in the role of scientists will build a solar oven, which can cook food, using only solar energy.
How does a solar oven work?

The oven can be a pizza box covered with a plastic window. The plastic window functions like a greenhouse roof, allowing direct and reflected sunlight to resist inside the box. In this way we retained the radiant heat.

The bottom, inside the box is covered with aluminum foil, and black paper, to absorb inside the direct and reflected sunlight. These rays which heat it, then radiate heat and this energy stays mostly trapped inside the box and heats it. The plastic window retains heat inside, similar to the insulation of the air space that is between the inner box and also the outer box.

Students can test their oven by: measuring the inner temperature with an thermometer, or setting the time it takes to boil a particular amount of water during a cooking pot.
• What’s radiant energy?
• How hot’s may be a box type solar oven and how hot should an oven be to cook food?
• Can a solar cooker work on a cloudy day?
• Why use a black cooking pot?


Recycling
: We dump over 2 billion lots of waste once a year and many of these wastes do not rot and finding somewhere to put them all can be a daunting task.
We actually lose more energy by not recycling. For example: beverage cans are made of aluminum, 95% more energy is required to form a new aluminum compared to 1 made from recycling other cans. So recycling or recovery will focus on the principle of separation and collection within the respective countries, for paper, glass, metal, household waste, etc.

Plastic water bottles, straws, fresh packages and bags became an element of our daily lives. But plastic does not disappear when we use it. So most block the ocean and become a significant environmental problem as they are not biodegradable. Therefore, our goal is to ask students to become environmentalists, where they will be divided into groups, to put their creativity to work so that students can take measures to protect the environment.

There are three main ways to help:

  • Reduce our waste.
  • To think right, that when we buy, to choose a sustainable option when possible.
  • Reducing our waste often begins with the fact that we do not throw away food, reduce the use of plastic.

After deciding what to create with bottles and plastic,students start working.

Result: A group of young artists, create works of art or decorative products whose products are created with recycled materials and food packages. E.g using masks to create flowers. The students checked their knowledges doing this test Recycling Quiz .

Citizens should use the areas around their homes to make gardens, to plant seasonal vegetables, i.e. food forest. Organic farming is constantly growing, which is increasingly becoming a concern for our health and also the foods we consume. We need to think about a better way of life, a commitment to ourselves, our well-being and the planet.

Advantages of bio food

  • Helps reduce environmental pollution that is often associated with the use of antiparasitics and nitrates.
  • Lack of toxic substances. Fruits and vegetables have their original taste and have quite important nutrients.

With the recognition of the seriousness of the issue, concepts are thus introduced to protect the ecological balance. So green design, eco-design and sustainable design become functional, thus confirming sustainable ecosystem solutions and thus requiring the use of renewable energy sources, practitioners situation and analysis, academic knowledge and research, sustainable policies and eco-friendly design environment.

Groups summarize their knowledge by creating brochures, presentations, films, animations, quizzes.

Seventh phase: The second group. Green and ecological cities are considered those cities that have reduced the import of food products by promoting domestic production, use of renewable energy, increase of green spaces and so on reduce the rate of greenhouse emissions, sustainable urban drainage systems, insulation of buildings in cold climates or management and use of rainwater on site (thus reducing the amount of energy required).

Urban sprawl and densification is responsible for the degradation, fragmentation or destruction of waste in natural areas.

Therefore, our students in the role of architects, engineers, scientists and researchers will develop the ambitious Urban Green Plans of their ecological and green city.

Students draw up plans for their city and model it in 3D and project the livelihoods of the population in their city and use the necessary infrastructure and services based on the questions.

• What are the biggest issues facing the cities of the future and population growth?

After exploring examples of cities around the world and successfully planning the city, students thus identify the needs of the population and understand the challenges posed by urban population growth. Students work in groups to create plans and diagrams of their sustainable city, before creating a 3D model. So each team presents the carpet and presents a city statute, exploring how we can all live more sustainably.

Sustainable city.

This project is realized in the form of a competition, giving students creative opportunities and cross-curricular connections

Green park:

Cycle and pedestrian green route.

https://youtube.com/shorts/piYHNCz8NIU?feature=share

Wind turbine

Climate-smart Greenhouses

Green roof

Electric vehicles.


Transportation
:


Hydropower
Moving to an area where such a lot of people live and work is hard so this must be carefully designed. Cars, buses, trains and trams, river boats, also as pedestrian walks and lanes for cyclists, you would like to form sure the facilities are in situ for everyone’s perfect balance.

Presentation in https://www.thinglink.com/scene/1441134806002827266

Eighth phase: The third group

Impact of ecological city on human health and connection with Covid-19.

The spread of the pandemic all over the world has caused since the time of quarantine and complete closure,

  • the level of carbon dioxide decreases as a result of car use,
  • to a lesser extent, factories were working at full capacity, also
  • coverage for illegal deforestation activities on the Amazon and poaching in Africa.
  • also during this pandemic period the amount of waste has increased plastic.

As a result of the use of masks, a considerable number of them were thrown into the natural environment, increasing the worldwide burden of plastic waste.

2. During the Covid-19 pandemic, the demand for plastics for medical use has increased significantly in some countries. In addition to personal protective equipment such as masks and gloves an increase of considerable use of plastic has been for reduction needs and available, these changes may exacerbate issues environmental plastics which existed even before the pandemic.

Ninth phase: How will you empower your city?

We all need to eat, but in a world with more and more people, where does it all come from? Transporting food remotely is costly and pollutes the environment. We also consume a lot of food and a lot of food is thrown in the bin!

Leading questions

  • Where will you grow enough food for your residents?
  • How can you make sure you eat as much food as possible without loss?

Humans aren’t the sole living things on the earth and that we need plants and animals to be ready to survive.

GOOD HEALTH AND WELL-BEING

Ensuring healthy lives and promoting the well-being for all in the least ages is important to sustainable city development. However, despite great strides in improving people’s health and well-being in recent years, inequalities in health care access still persist.

What can we do to help?

Students start by promoting and protecting their own health and the health of others by making well informed choices, healthy foods choices. They can raise awareness within the community about the importance of excellent health, healthy lifestyles also as people’s right to quality health care services.

Students make a quiz. How healthy are you?:

https://www.surveymonkey.com/r/TW66RS6

The fight against garbage are going to be effective if initiated and implemented locally and regionally. This help to make our city more sustainable city.

WE can start by doing simple things, for instance, greening our home. There must be a future during which cities provide opportunities for all, with access to basic services, energy, housing, transportation and more.

  • Teacher ask students if they believe that their daily choices can affect the lives of farmers, since we all have power as consumers and global citizens.
  • I ask students to think about what they can do to help achieve the Sustainable city, to improve the lives of those people who grow their food, their vegetables.

Why? If we don’t act to change our consumption and production patterns, we will cause irreversible damage to our economy and environment. This help sustainable city to grow up.

Final presantation

Project presantation in front of environmental specialists.

All students of our school voting for the best project. The winner is classe A .

ASSESSMENT.

Thought brainstorming, quiz, direct observation, final presentation. Assigning student assignments in a form of group discussion to solve problems related to the topic of the Ecological City. Create a quiz in Quizizz about Sustainable city

Discussions between students in groups, inviting students to draw conclusions based on their opinion.

Initial evaluation

Brainstorming: After introducing the topic, using Brainstorming that current knowledge of students can be assessed.

Formative assessment

Thought storm, discussion, students value each other, self-esteem. Great potential for focusing on art, using STEM to influence climate policy, can create a shift in climate awareness and participate in the engagement of our communities. Students can use photos, leaflets, videos, create posters.

Final evaluation

Final presentation: Presentation, in group discussion of the results obtained in the forum, display of group works in the form of a fair and voting by school students for the most beautiful model.

Evaluation criteria: Cooperation, communication, creativity, knowledge, critical thinking.

I have created different quizzes at Quizziz for evaluation.

______________

*For more information about Sustainable Development, I with my students have registered at event.

Virtual T³ (Teachers Teaching with Technology) Europe conference. T³ Europe is a network of STEM (Science, Technology, Engineering and Mathematics) teachers that serves as umbrella body for country organizations to provide quality professional development, classroom-proven content and integrated state-of-the-art classroom pedagogy.

Sharing Inspiration 2021 – STEM Education for a Sustainable World.

All the visuals, photos and videos belong to the Author – Attribution CC-BY